

DATA STRUCTURE COMPLETE LEARNING PATH

(FROM ZERO TO ADVANCED-LEVEL MASTERY)

MODULE 1: INTRODUCTION TO DATA STRUCTURES

- Definition and types of data structures
- Static vs Dynamic structures
- ♣ Abstract Data Types (ADT)
- Time & Space Complexity
- ♣ Recursion vs Iteration

MODULE 2: ARRAYS AND STRINGS

- 1D and 2D Arrays
- ♣ Operations: Traversal, Insertion, Deletion, Search
- Sorting:
 - Bubble, Selection, Insertion Sort
 - Merge Sort, Quick Sort
- Searching:
 - Linear Search, Binary Search
- Strings:
 - String operations
 - String manipulation techniques
 - Pattern matching: KMP, Rabin-Karp

MODULE 3: LINKED LISTS

- Singly Linked List
- Doubly Linked List
- Circular Linked List
- Operations: Insertion, Deletion, Traversal
- Applications (e.g., polynomial addition, LRU cache)

MODULE 4: STACKS

- Definition and operations
- Implementation using array and linked list
- Infix, Prefix, Postfix expressions powering the Next
- Applications:
 - Expression evaluation
 - Syntax parsing
 - Undo feature in editors

MODULE 5: QUEUES

- Linear Queue
- Circular Queue
- Deque (Double-Ended Queue)
- Priority Queue
- Implementation (Array/Linked List)
- Applications: Scheduling, buffers

MODULE 6: TREES

- Binary Tree
- ♣ Binary Search Tree (BST)
- AVL Tree (Self-balancing)
- B-Trees, B+ Trees
- Tree Traversals: In-order, Pre-order, Post-order, Level-order
- Applications: Expression Trees, Decision Trees

MODULE 7: HEAPS

- Max Heap, Min Heap
- ♣ Heap Operations (Insert, Delete, Heapify)
- Heap Sort
- Applications: Priority Queues, Scheduling

MODULE 8: GRAPHS

- Representations: Adjacency Matrix/List
- Types: Directed, Undirected, Weighted
- Graph Traversals:
 - BFS (Breadth First Search)
 - DFS (Depth First Search)
 - Shortest Path Algorithms:
 - Dijkstra, Bellman-Ford
 - Floyd-Warshall, A*
 - Minimum Spanning Tree:
 - Kruskal's, Prim's Algorithm
- Applications: Maps, Social Networks, Al pathfinding

MODULE 9: HASHING

- Hash Functions
- Collision Handling: Chaining, Open Addressing
- Hash Table implementation
- Applications: Indexing, Caching

MODULE 10: ADVANCED TOPICS & REAL-WORLD APPLICATIONS

- ♣ Trie (Prefix Tree)
- U 4 Segment Tree
 - Fenwick Tree (Binary Indexed Tree)
 - Disjoint Set (Union-Find)
 - ♣ LRU Cache, Top K elements
 - Real-world problems using data structures (LeetCode, GFG)

PRACTICE & MINI PROJECTS

- ♣ Live coding: Daily DSA problems
- ♣ Competitive programming rounds
- Mini Projects:
 - Spell checker using Trie
 - Movie Recommendation System using Graphs
- Memory Management Simulator (Stack + Heap)

Assessment: Weekly coding tests, quizzes, and one final capstone project.